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CHAPTER 1. INTRODUCTION 

Background 

Refrigerator/freezer production is a three billion dollar industry in the United 

States and is growing at about 2% annually [1], Home refrigerators are the largest 

consumers of electricity among household appliances, consuming an estimated 7% of 

the total electricity used in the United States [2, 3]. 

The energy consumption of domestic refrigerator/freezers contributes to increased 

emissions of carbon dioxide by fossil fuel power plants. Carbon dioxide is suspected 

to be a major contributor to the green house effect or global warming phenomena. 

To mitigate fossil fuel demands and the environmental impacts, the manufacturers 

have been faced with progressively tougher energy-efficiency standards. The Na­

tional Appliance Energy Conservation Act (NAECA)[4] was enacted in 1987 and 

went into effect January 1, 1990. The NAECA established energy efficiency stan­

dards for several consumer appliances including refrigerator/freezers. Also in 1990, 

the Department of Energy (DOE) established energy standards for the 1993 model 

year that require a 25% greater efficiency over 1990 levels [5]. 

Since 1978, several studies have been conducted to improve the efficiency of 

refrigerator/freezers. To achieve this goal, various designs were developed and tested. 

A variety of improvements were suggested, including compressor modification, better 
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insulation, adaptive defrost, etc. Gasket improvements appeared in most of the 

studies as an option. 

A portion of heat gain to a refrigerators/freezer occurs around the edges of the 

doors, through nearby portions of the cabinet surface, and through the door gaskets 

themselves. The gaskets in a refrigerator/freezer act as seals to contain the cold air 

and to thermally isolate the plastic liner from the outer steel structure. Figure 1.1 

shows a typical refrigerator/freezer door gasket configuration. As shown, the gasket 

sits between the cabinet insulation and the door. The door gasket itself has trapped 

air bubbles which have low thermal conductivity and a piece of magnet used for door 

closing. 

Recent studies show that the gasket area heat gain may account for as much as 

21% of the total thermal load [6]. Some infiltration also occurs since the door seal 

cannot be perfect. There is not a unanimous agreement among manufacturers and 

literature sources regarding total gasket gain (gasket infiltration and heat gain) in a 

typical home refrigerator/freezer. This lead the present research to question the pre­

cise magnitude of the total gasket heat gain. Another source of energy consumption 

is the anti-sweat heaters placed near the gasket to eliminate condensation. Minimiz­

ing gasket heat gain in a refrigerator/freezer reduces the need for anti-sweat heaters 

and lowers energy consumption. In the near term, higher energy efficiency standards 

are providing considerable impetus to reduce gasket heat gain. 

Another factor in reducing the energy consumption of refrigerator/freezer has 

been the use of chloroHurocarbon-12 (CFC-12) [7]. CFC-12 has been used in home 

refrigerator/freezers due to its favorable characteristics such as non-flammability, low 

toxicity and non aggressive behavior with other materials. .A. house hold réfrigéra-
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Figure 1.1: Typical door gasket configuration 
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tor/freezer unit typically uses 8 to 14 oz of CFC-12 in a vapor compression system 

[8]. 

It is well-known that CFCs slowly migrate into the stratosphere where they 

decompose by action of sunlight and split off free chlorine molecules that react with 

ozone in the upper atmosphere [9]. As a result, CFCs are suspected of playing a role 

as a major contributor to the ozone depletion that has occurred in the stratosphere. 

At the same time that the industries are confronted with ever tightening energy 

efBciency standards, they are also faced with CFC phase out. 

In 1987 the Montreal Protocol was signed by 24 countries on substances that 

deplete the ozone layer [10]. The Montreal Protocol called for the CFC-producing 

nations to freeze their production of CFCs at their 1986 levels beginning in July of 

1989, and then to reduce their production by 20% in 1993 and to 50% of 1986 levels 

in 1998. 

Extensive search has been conducted during the past years to replace R-12 with 

a new refrigerant that does not contain CFCs. This search is being pursued to 

select an environmentally acceptable refrigerant that has minimal effect on energy 

consumption of refrigerator/freezers. Thus, researchers have come up with several 

different potential replacements for CFC-12 in refrigerator/freezers, such as HFC-134, 

HFC-134a, HCFC-22, HFC-152a. Several blends have also been considered. 

At present HFC-134a is considered the most likely replacement for CFC-12 in 

house hold refrigerator/freezers. It has thermodynamic properties similar to CFC-12, 

and has the advantage that it contains no chlorine at all. Hence, it has a zero ozone 

depletion potential. One of the major drawbacks to using HFC-134a has been that 

it is immiscible with any of the commonly used refrigeration oils. Also, some studies 
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indicate a slightly higher energy consumption for HFC-134a as a drop-in replacement 

for CFC-12. However, the question remains whether minor modifications to the 

refrigerator/freezer system using HFC-134a will improve their energy consumption 

to acceptable levels. As a result of the NAECA and Montreal Protocol, refrigera­

tor/freezer manufacturers and researchers are presently searching for more efficient 

refrigerator/freezer designs which utilize non-CFC refrigerants. 

Objective 

The objective of this research was to investigate, both experimentally and theo­

retically, questions regarding total gasket gain (gasket infiltration and heat gain) and 

the effects of HFC-134a refrigerant as an alternative to CFC-12 on energy consump­

tion of refrigerator/freezers. 

First, the significance of gasket infiltration and heat gain in a 20 home 

refrigerator/freezer was explored. Then, this research experimentally investigated the 

effect of HFC-134a as a drop-in replacement for CFC-12 in home refrigerator/freezer. 

The goal was to evaluate the performance of the unit charged with HFC-134a and 

its compatible lubricant while no system modifications were considered. In addition 

to using HFC-134a as a drop-in replacement, this research investigated the effect 

of different HFC-134a charges and capillary tube lengths on the refrigerator/freezer 

performance. 

This research presents the results of an extensive literature review, interviews 

with refrigerator/freezer and gasket manufacturers, experimental and theoretical eval­

uation of gasket infiltration and heat gain. Also included is a description of the ex­

perimental evaluation of HFC-134a as a drop-in replacement for CFC-12 combined 
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with different capillary tube lengths and different HFC-134a charges. A detailed 

discussion of each of these is presented in the following chapters. 
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CHAPTER 2. REVIEW OF LITERATURE 

Review of Gasket Literature 

A refrigerator/freezer cabinet consists of two or more compartments, with at 

least one compartment designed for the refrigerated storage of fresh foods at tem­

peratures above 32 and with at least one compartment designed for the storage 

of frozen foods at 8 T or below. As mentioned, a portion of the heat gain to a 

refrigerators/freezer occurs around the edges of the doors, through nearby portions 

of the cabinet surface, and through the door gaskets themselves. The gaskets in a 

refrigerator/freezer act as seals to contain the cold air and to thermally isolate the 

plastic liner from the outer steel structure (See Fig. 1.1). 

Gasket improvement was part of several studies that have been conducted to 

reduce energy consumption of refrigerator/freezers. Kammerer and Maxwell [11] 

explored means for reducing energy use in existing refrigerator/freezer designs. They 

indicated that gasket heat gain might account for as much as 19% of the total heat 

load. However, they didn't include gasket improvements among their recommended 

design improvements. Hoskings and Hirst [12] calculated the gasket loads for 12 and 

16 f t^ refrigerator/freezers. Although they did not include gasket improvements 

in their list of suggested design changes, their computer model simulated the open 

door condition and calculated the gasket load. The calculated heat loads for a 12 
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and a 16 ft^ refrigerator-freezer are 13.54 and 15.16 watts (13% and 12% of the 

total thermal load), respectively. Two major studies by Arthur D. Little Company 

(ADL) company explored gasket improvements as design options for higher efficiency 

refrigerator/freezers. In the first ADL study [13] , improvements were made to the 

door closure area to reduce infiltration of room air into the refrigerator. 

The second study by ADL consisted of two phases. Phase I, reported in [14] , 

involved the design, construction, and laboratory testing of a 16 ft^ high efficiency 

refrigerator/freezer prototype. ADL reported a 47% reduction in freezer heat flow 

by incorporating a vinyl type secondary gasket into the freezer compartment of the 

base line unit (see Fig. 2.1). However, this reduced the overall energy consumption 

by only 3%. The ADL study also showed that only the double door gasket in the 

freezer effectively reduced the energy consumption. As shown in the ADL model 

of door closure area (Fig. 2.1), the additional door seal is placed between the door 

shelf and the wedge and cabinet wall of the refrigerator/freezer. According to the 

ADL, incorporating a double door gasket in the freezer compartment caused heat 

flow reduction as shown in table 2.1. 

Table 2.1: ADL gasket heat flow {^j~) 

Base Line Value Double Gasket 
Evaporator fan on 62.5 41.9 
Evaporator fan off 43.5 28.8 

Phase II, reported in [15] , consisted of a field test that was carried out for 

an identical setup with the exception of the size. An eighteen cubic foot refriger­

ator/freezer was selected for the second phase. In the Phase II study, double door 

gaskets on freezer doors were not considered due to the limitation existing with dou-



www.manaraa.com

9 

Plane Wall 
Heat Flow 

Wedge 
Heat Flow 

Flange 
Heat Flow 

Additional Door Seal 
met Wa 

Wedge 

Door Shelf 

Figure 2.1: ADL model of door closure area 



www.manaraa.com

10 

ble door gaskets associated with freezing of trapped moisture which can jam the door 

shut. 

The results of the field tests as well as the data obtained from the Phase I study 

were published in four different reports. References [16] and [17] identified the results 

from Phase I, while references [18] and [19] highlighted the findings of the field test 

(Phase II) study. 

Sterling [20] calculated the heat leakage through gaskets, using energy factor 

concepts. He determined increase in energy usage as the volume ratio (ratio of freezer 

volume to total volume) increases. Table 2.2 shows heat leakage through the gasket 

of a 15.6 ft^ refrigerator/freezer as was calculated by Sterling. 

Table 2.2: Sterling gasket heat flow 

Volume Ratio Freezer Fresh Food Total 
freezer 
int.nl 

Btu 
hr Watts Btu 

hr Watts Btu 
hr Watts 

.20 45.19 13.24 29.36 8.60 74.55 21.84 

.30 56.50 16.55 28.12 8.24 84.62 24.79 
1.0 121.40 35.57 - - 121.40 35.59 

Sterling's work confirms that heat leakage through the fresh food gasket area is 

significantly less than through the freezer gasket area. 

Lawrence Berkeley Laboratory (LBL) also conducted research on home appli­

ances in order to update the selection of design options [21]. The LBL study indi­

cated that double door gaskets cause problems in the field due to freezing of trapped 

moisture. An improved single door gasket, which provided some of the double door 

gasket benefits without the indicated problems, was added to the list of new design 

options for higher efficiency refrigerator/freezers. However, the LBL study did not 

suggest any specific design improvements. 
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A study done by the Department of Energy (DOE) [22] did not include the 

double door gasket in the simulation analysis due to technical difficulties, but gasket 

improvement was among the design options suggested. These results were published 

in a paper by Turiel and Heydri [23]. The most recent study by Abrahamson, Turiel, 

and Heydari [6] indicated that about 21% of thermal load is due to gasket loss. They 

predicted that 5.9% of the fresh food load and 16.5% of the freezer load are due to 

gasket heat leakage. 

In addition to the literature survey, the present study also involved contacting 

the major refrigerator/freezer manufacturers and gasket suppliers. Interviews with 

engineers indicated little agreement about the precise magnitude of gasket heat leak­

age. In addition, the definitions of the particular area associated with " gasket " heat 

leakage appeared to vary among manufacturers as well as among the other research 

studies discussed above. This may account for the apparent variation of between 

5% and 30% of the energy consumption that different sources associate with gasket 

loads. Nevertheless, all manufacturers agree that improved gasket design to reduce 

heat leakage was a priority for helping to meet new energy standards, and as such was 

receiving considerable attention in their companies. In addition to gasket literature, 

extensive review of alternative refrigerant literature as conducted, and is presented 

in the following section. 

Review of Literature on Alternative Refrigerants 

The agreement of the Montreal Protocol to regulate the production and trade 

of CFC-12 has greatly influenced the refrigeration industries. At present, extensive 

research is being conducted at many institutions to replace the CPC-12. This search 
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is being pursued to select a refrigerant that has minimal effect on energy consumption 

of refrigerator/freezers as well as on the environment. Thus researchers have come 

up with several different potential replacements for CFC-12 in refrigerator/freezers, 

such as HFC-134, HFC-134a, HCFC-22, HFC-152a. Additionally, several blends have 

been considered. 

Fischer and Creswick [24] reported a quantitative assessment of the potential 

energy-use impacts of possible alternatives (mainly HCFC-123, HCFC-141b and 

HFC-134a) to CFCs for a variety of applications. The energy analysis was done 

for a domestic IS ft^ (.51 in^) refrigerator/freezer, with 60% compressor and 80% 

motor efficiencies were assumed, respectively. In their study, the energy use of each 

alternative was evaluated on the basis of daily energy use per unit, and then compared 

with the energy use of the base. This study used the ADL model [14] to estimate 

daily energy use of the indicated unit. 

Their analytical study showed a very small change in energy consumption of the 

refrigerator/freezer unit for HFC-134a. They project an increase of 0.08 quads/year 

in energy use nationwide as a result of the shift to HFC-134a. 

Alternative refrigerants for CFC-12 in domestic refrigerator/freezer were stud­

ied by Boot [25]. In this study, Boot used a compressor calorimeter setup to evalu­

ate the effect of alternative refrigerants (HFC-134a, HCFC-22/HCFC-142b, HCFC-

22/HCFC124 and HCFC-22/HCFC-124/HFC-152a) on home refrigerator/freezers. 

In every case, the reciprocating compressors were tested with both the refrigerant al­

ternative and CFC-12. His study showed that HFC-134a is less efficient than CFC-12, 

with about an 8% lower energy efficiency ratio (EER). His experiment also indicated 

about 4% lower EER using CFC-22/HCFC-142b and only about 1% reduction in 
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EER using HCFC-22/HCFC-124/HFC-152a. 

Although in recent years many reports indicated increased energy consumption 

of refrigerator/freezer using HFC-134a, a study done by Hanson [26] indicates other­

wise. He showed that there was no increase in energy consumption using HFC-134a 

in a domestic refrigerator/freezer if compressor and cooling circuits were modified. 

He used a standard CFC-12 compressor which was only modified to accommodate 

different torque requirements. The modification was made to produce the torque 

required for HFC-134a using lubricant PAG with a viscosity equal to that of mineral 

oil used in CFC-12 compressors at 104^F. 

Household refrigerator/freezers were included in a study done by ADL which was 

summarized by Statt [27]. This study discussed the effects of alternative refrigerants 

on air conditioning, as well as refrigeration systems. For home refrigerator/freezers, 

this study considered different refrigerants (HCFC-22, HFC-134a, HFC-152a, and 

azeotropes blend) and showed 5 to 10% increase in energy consumption for HFC-

134a, and HCFC-22 and 5-10% decrease in energy usage for the rest of them. 

Vineyard [28] selected six different refrigerants, namely HFC-134a, HFC-134, 

HFC-152a, HFC-134a/HFC-152a, HCFC-22/HFC-152a/HCFC-124, and HFC-134a/HFC-

152a/HCFC-124. These refrigerants were considered the most likely to replace CFC-

12. He tested four pure refrigerants, including CFC-12, in an IS (.51 m^) 

automatic-defrost top-mount refrigerator/freezer. A capillary tube manifold (a set of 

three capillaries) was installed on the base line unit in order to control the refrigerant 

flow as needed. Also, with each different refrigerant he used a new compressor that 

was sized to reflect changes in volumetric capacity of the corresponding refrigerant. 

The final results indicated that with HFC-134, HFC-134a, and HFC-152a, the energy 



www.manaraa.com

14 

consumption increased by 6.8%, 7.3%, and 7.3% respectively. 

In earlier work. Vineyard, Sand, and Miller, [29] tested five different refrig­

erants (CFC-12, HFC-134a, HCFC-500, CFC-12/dimethylether(DME), and HCFC-

22/HCFC-142b) for their energy consumption in an unmodified 18 ft^, top-mount 

domestic refrigerator/freezer utilizing the identical lubricant. Their unmodified test 

unit consumed 7.8%, and 8.6% more energy for HFC-134a and HCFC-22/HCFC-

142b compared to CFC-12 respectively. Also they showed 5.8% and 6.6% reduction 

in energy consumption for HCFC-500 and CFC-12/DME, respectively. 

Jung and Radermacher [30] numerically investigated the effect of pure and mixed 

refrigerants as alternatives to CFC-12 in an unmodified domestic refrigerator/freezer. 

A computer simulation was performed on fifteen pure and twenty-one mixed refrig­

erants, and the results showed that none of the pure refrigerants could be used as 

drop-in substitutes for CFC-12. This was attributed to the change in volumetric 

capacity of the alternative refrigerants. Also, no significant increase in COP of the 

unit was reported for 21 mixed refrigerants by this simulation. The same finding was 

identified in reference [31]. 
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CHAPTER 3. ANALYSIS OF GASKET HEAT GAIN 

There are many design options available for producing improved and more effi­

cient home refrigerator/freezers. Examples include compressor modifications, better 

insulation, adaptive defrost, and others some of the possible design improvements in 

existing home refrigerator/freezers are associated with reducing the gasket heat gain. 

The current chapter presents the theoretical analysis of double and single door 

gaskets as well as possible design improvements. It also presents the analytical eval­

uation of gasket infiltration and heat leakage. 

Double Door Gasket 

According to literature and experts in the field, gasket heat gain appears to 

account for at least 10% of the thermal load of refrigerator/freezers. One concept for 

reducing the gasket loads is to insert an additional inner door gasket (see Fig. 2.1). 

This improves the insulating value of the gasket area and reduces energy consumption. 

Despite the possible energy benefits, double door gaskets haven't been used by 

many manufacturers because of performance and cost. The limitations existing with 

double-door gaskets include the following: 

1. Ice has a tendency to form between the freezer compartment gaskets due to 

trapped moisture. The ice greatly reduces the thermal effectiveness and can 
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freeze the door shut. 

2. Inner seal problems exist due to requirements for special gasket materials. The 

materials developed must be highly compliant and yet durable to serve as a 

good inner seal held by the force of the magnetic outer gasket. 

3. Double door gaskets tend to be visually unattractive. 

4. Difficulties can exist with ease of door closing, which can detract from consumer 

acceptance. 

5. Double door gaskets can make it more difficult to meet the minimum door 

opening force requirements of the Child Safety Act. 

Single Door Gasket 

Due to the limitations of double door gasket indicated earlier, refrigerator/freezer 

manufacturers and their gasket suppliers have focused their efforts on producing 

thermally improved single gaskets with higher insulating values and better sealing 

characteristics. The improvements to single door gaskets make the double door gasket 

concept of energy saving less important. According to [21] , heat gain by an improved 

single door gasket is 10% less than the 1982 ADL-proposed gasket [14]. 

The following discussions detail some of the considerations concerning materials, 

design evolution, and possible gasket design improvements. 

Materials 

Door gaskets are usually made of flexible plastic. The most common plastic 

materials used in gaskets are: thermoplastic elastometer (TPE) and polyvinylchlo-
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ride (PVC). These materials range from the very soft and delicate to rigid and wear-

resistant, and their suitability is mainly related to such considerations. The primary 

thermal barrier in the gasket is trapped air bubbles, which have low thermal con­

ductivity. The materials themselves do not contribute significantly to the thermal 

resistance. The present study indicates that little improvement in thermal perfor­

mance is possible in the area of gasket materials. 

Design Evolution 

Early designs for extruded single door gaskets depended upon mechanical com­

pression provided by a latch mechanism to seal (Fig. 3.1a). While still suited to some 

applications, the compression design was improved dramatically by a development 

called supported compression (Fig. 3.1b). The next major design improvement was 

done by inserting magnetized extrusions of ferrite compounds for sealing (Fig. 3.1c). 

The magnets are used in place of latch and striker plate. This improvement resulted 

in consumer satisfaction and improved safety. 

Remaining improvements in gasket design involved improving the thermal resis­

tance. The next step was the extended bubble magnetic design (Fig. 3.Id). In addition 

to compression and magnetic attraction, this design introduced the wand which ex­

tended from the inner edge of the bubble. Currently the most efficient gasket is the 

multiple bubble magnetic design (Fig. 3.le), where the extra bubble acts as an insu­

lator, reducing heat leakage. As shown by Figure 3.If the newest gasket design with 

additional air pockets incorporated in the gasket and retainer area. These refinements 

will assist in reducing the heat leakage, and therefore improve the energy efficiency 

by an amount yet to be identified. Due to the expected enhanced performance, in 
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Figure 3.1: Gasket evolution 
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1993 the manufacturers of refrigerators/freezers will most likely standardize on this 

type of improved gasket. 

Other Possible Design Improvements 

Other possible areas of design improvement were identified in the course of the 

present study. These improvements can be divided into two separate categories: 

• Reduction of the gap between the gasket and body 

• Further increase in thermal resistance in the gasket area 

It must be noted that some of the following concepts are already being incorporated 

and/or designed into existing products. 

Possible areas of improvement include: 

1. The use of a half-bellows design (Fig. 3.Id), which eliminates alignment prob­

lems and turn over on the hinge side. In general, the bellows design provides the 

ability to expand or collapse and influences stability for maximum sealing ef­

fectiveness. To achieve maximum effectiveness, one manufacturer recommends 

a bellows thickness of 0.17 inch. 

2. The use of ribs as flow diverters within the compartments is quite common 

(Fig. 3.2). Fig. 3.2 shows a typical refrigerator/freezer with a flow diverter place 

near the freezer door to direct the cold air away from the gasket area. This helps 

to reduce heat gain by conduction through the gasket and to reduce infiltration. 

The primary design challenge is to adequately distribute air throughout the 

compartment while reducing the impingement of air directly on the gasket. No 
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Figure 3.2; Schematic of flow diverter 
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quantitative estimate has been made of the impact of this practice on energy 

consumption. 

3. The addition of one air pocket (different sizes and shapes) to each side of 

retainer (Fig. 3.If) can also be beneficial. This provides better retaining of 

gasket in the body, and still allows for easy sealing. Additional air pockets 

increase the thermal resistance of the gasket and thereby reduce heat gain. 

However, the potential for this type of improvement is limited by the need for 

flexibility. Gaskets must typically collapse or expand from about 0.65 inch to 

about 1.0 inch. 

4. Another suggested improvement is to fill some of the air pockets with insu­

lating materials such as fiberglass or foam. However, adding these materials 

would reduce the flexibility of the gasket, and would therefore be unacceptable. 

Further, a trapped bubble of stagnant air is one of the best insulating medi­

ums available, and it is doubtful that any improvement in thermal performance 

would be realized by filling the pockets with solid materials. 

5. Mechanical door latching can provide better sealing than magnetic latches due 

to the increased pressure exerted by the door on the gasket. Potential improve­

ments due to mechanical door latching are difficult to quantify. One effect would 

be to reduce infiltration, but the magnitude of this potential improvement is 

unknown. Another effect could be negative; to collapse the air bubbles that 

provide insulating value. Even if a mechanical latching door could be designed 

to reduce energy use and to meet the existing safety requirements (which are 

described later), this feature still may not be suitable. Present practice die-
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tates the availability of units with interchangeable right or left operation of the 

door, as desired by the customer. Thus, a universal reversible hinge design is 

commonly used to avoid having to market different models strictly due to door 

operation. The latching mechanism lacks this universality and would be used 

only as a last resort. 

According to the Consumer Product Safety Commission (CPSC) [32] and 

Underwriters Laboratories Inc. (UL) [33], door-latching devices must follow 

standard rules and regulations. A door-latching device is a device that holds 

the door shut. A magnetic door gasket is considered a door-latching device 

for the purpose of these standards. Listed below are some of the requirements 

for latching devices; however, references [32] and [33] provide more detailed 

descriptions of the standards. Some of these requirements are: 

(a) The door can be opened from a totally closed position from the interior. 

(b) The opening device is accessible from anywhere in the interior. 

(c) The device can be the application of an outward force from the interior. 

(d) The applied force must not exceed 15 (66.7 N) directed perpendicularly 

to plane of the door anywhere along the latch edge of the inside of the 

closed door. 

(e) A latch-release device must not depend on any electrical source for its 

operation. 

(f) Latch-release device performance must be unaffected by spillage, cleaning, 

defrosting, and condensation. 

(g) The device must satisfy wear and strength tests. 
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These regulations govern any changes that would be made to the door closure 

which are intended to improve energy conservation. It is unlikely that a me­

chanical door latching device will return to the market place, despite energy 

considerations. 

6. Another potential area for reducing heat leakage due to door sealing is to design 

interior compartments that are separate from one another and that each have 

their own doors. This might reduce infiltration and provide greater thermal 

resistance between the coldest air and the outside of the cabinet. However, 

consumer acceptance and cost are likely to be barriers to the use of this concept. 

Also, the ADL study [14] indicated that the expected savings with internal doors 

would be comparable to the savings obtained using double door gaskets, which 

is a much simpler and less costly alternative. The concept of internal doors is 

not expected to be seriously pursued in the future. 

Gasket Infiltration 

Some of the thermal load on refrigerator-freezers may be due to gasket infil­

tration. Infiltration is the uncontrolled leakage of air into the refrigerator-freezer 

through the door gasket. This is caused by a pressure difference across the boundary 

surface, and it accounts for some of the thermal load. After several conversations 

with different manufacturers and reviewing the literature, it is evident that there is 

no unanimity in the importance of infiltration. In fact, some literature contradicted 

the views of experts in the field. Infiltration of air was considered insignificant ac­

cording to the ADL study (about 5 however, some manufacturers indicated as 
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much as 100heat gain due to the infiltration effect. 

Because of the apparent uncertainty about the importance of infiltration, an 

attempt was made to model the heat gain due to infiltration. The following charac­

teristic values for a typical 20top mount, refrigerator/freezer were used: 

Room temperature. To = 90 

Room humidity, u>o = 0.031 (100% relative humidity) 

Specific heat of air, Cp = 0.24 

Specific volume of room air, Vo = 13.986 

Freezer compartment temperature, = 5 

Inner humidity, = 0.0004 (10% relative humidity) 

Enthalpy of vaporization, i  jg = 1042.7 

A brief engineering analysis follows: 

The sensible heat load due to infiltration, qsensi can be expressed in terms of 

the infiltration rate, Q, as follows: 

<,sens = (3.1) 
Vo 

Further, the latent load, qi^ii can be expressed as 

^Hat -  - '^in)^f(j  (3 2) 

Infiltration loads can be estimated using equations 3.1 and 3.2 for any given 

infiltration rate. The infiltration rate is dependent upon the pressure differential that 

exists between the inside and the outside of the refrigerator/freezer box. Because of 

frictional pressure drop through the internal ducting, slight negative and positive 

gauge pressures will exist between the suction and the discharge sides of the fan. 
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respectively. The infiltration rate is also dependent upon the nature of the crack due 

to the gasket seal and any penetrations of the liner or duct work. An estimate of this 

relationship can be obtained using the following expression which is based upon data 

for a tight-fitting door in reference [34]. 

Y = A'ApO-64 (3.3) 
Jj 

where L is the effective crack length (one half the total gasket length for both doors) 

in feet, Ap is the pressure differential in inches of water, infiltration rate, Q, is in 

cubic feet per minute, and K is a unit conversion constant. 

Figure 3.3 shows the sensible, latent, and total loads as functions of pressure 

difference, for a total gasket length of 20.17 feet as used for a typical 20refrig­

erator/freezers. The curves show that the magnitude of the load due to infiltration 

may be substantial or may be negligible compared to other loads, depending on the 

pressure difference. Based upon discussion with manufacturers, 0.01 inches of water 

was selected as characteristic of the magnitude of pressure differential. With this 

value, the loads as determined from equations 3.1, 3.2 and 3.3 would be 

,  Btu 
Qsens — 43.3 

^lat = 72-4 

^Itot ~ 115.8-

hr 

Btu 

hr 

Btu 

hr 

From the calculations presented here and from the literature cited, there exists 

considerable uncertainty as to the magnitude of the infiltration effects. Although 

companies most likely have proprietary information, no actual data was found in the 

open literature. 
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Figure 3.3: Load estimate due to infiltration 
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Gasket Heat Leakage 

Gasket heat leakage, not including infiltration, is estimated analytically using 

two separate methods. Analytical calculation of the total gasket heat leakage is a 

combination of the following components (refer to Fig. 2.1): 

• conduction along the flange 

• heat leakage through the small gap between the gasket and wedges 

• heat leakage through the gasket itself 

• heat leakage between the gasket and door 

Total heat load due to the gasket is calculated in various ways in the literature. 

Two methods of determining this load are: 

METHOD 1 : 

"Igasket = (3-4) 

where 

A( = temperature difference between cabinet interior and ambient 

1 = total gasket length 

Hg = gasket heat leak coefficient 

Gasket heat leak coefficients can be found in reference [22], and are as follows: 

Freezer — Fan on = 0.0069-—:—— 
hr.in^F 

Freezer — Fan off  = 0.00041 -—:—— 
• hr.in^F 

Refrigerator = 0.00141 , „r~, 
hr.in.F 
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METHOD 2 : 

^gasket ~ (-^r-ATr + Lj- .ATj-){a + /3.f)  (3.5) 

ATr = temperature different between ambient and fresh food compartment (^F) 

ATy = temperature different between ambient and freezer compartment F) 

Lr — length of fresh food gasket (door perimeter, ft) 

XjT = length of freezer gasket (door perimeter,ft) 

a = 0.05 (static-fan off) 

(3 — 0.036 (dynamic-fan on) 

f = fan run time fraction 

Using Equations 3.4 and 3.5 and using the data from the infiltration calculation 

presented earlier yields the following results: 

METHOD 1: q = 70.67 ^ (fan on) 

METHOD 2: q = 82.86 (43% fan run time fraction) 

From literature surveys, manufacturers input, and the engineering analysis men­

tioned earlier, there exists considerable uncertainty as to the magnitude of gasket 

infiltration and heat leakage. In light of these findings and the fact that little actual 

data are available in open literMure concerning gasket heat gain, experimental mea­

surements were conducted of infiltration and heat leakage through the door gasket. 

The details of the experimental investigation are presented in next chapter. 



www.manaraa.com

29 

CHAPTER 4. EXPERIMENTAL EVALUATION OF GASKET HEAT 

GAIN 

An experimental evaluation of gasket heat gain was conducted and is presented 

in this chapter. All experiments were conducted in a calorometic room in the Building 

Energy Utilization Laboratory (BEUL) of the Mechanical Engineering Department. 

This chapter includes a detailed description of the instruments used, a brief discussion 

of the experimental test procedures, and discussion of the results obtained. 

Test Setup 

Equipment and Instrumentation 

The experimental setup for this research is illustrated in Fig 4.1. It consisted 

of a 20 ft^ top mount, automatic defrost, refrigerator/freezer which is commercially 

available. The refrigerator-freezer was instrumented so that total energy consump­

tion, average power usage, differential pressure between the inside and outside, pres­

sure drop across the capillary tube, and the inside and outside temperature could be 

measured via a data acquisition system. 

The following elaborates on the details of the instruments and equipment used 

in the experimental setup. 

1. Thermocouples: The temperatures in the freezer and fresh food compart-
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Figure 4.1: Experimental setup 
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ment of the unit were measured using a grid of 6 high quality T-type thermocouples 

(OMEGA, Catalog# PR-T-24, and Lot# T-0277) in each compartment. The ther­

mocouples were calibrated using a hot water bath and a thermistor setup. These 

thermocouples were installed separately in each compartment in order to provide 

the average temperature for fresh food and freezer compartment during the test (see 

Fig. 4.1). The accuracy associated with the T-type thermocouples were estimated as 

±.2®F. 

2. Power transducer: The power into the compressor as well as the total energy 

consumption of the unit were measured using a watt transducer (Ohio Semitronics 

Inc., model# XL5C5A2, 1 phase, 2 wire, and 1 element) and a Kilowatt-Hour Meter 

(KW-HR Meter) (Westinghouse Type CS, 120 volts, and serial# 16434654). The 

watt transducer was calibrated by its manufacturer prior to its shipment and the 

accuracy was given as ±.2 % of full scale reading, while the error associated with a 

reading from the KW-HR Meter for a typical test was approximately ± 0.5 Watt. 

3. Micro-manometer: To calculate the theoretical infiltration, a micro-manometer 

(Microtector, Dwyer Instruments Inc.) was utilized to manually measure the differ­

ential pressure across the refrigerator/freezer cabinet and its outside pressure. 

4. Calorimetric room: In order to provide the desired outside temperature (To) 

and to maintain a constant outside temperature throughout the experiment, a calori­

metric room was used. Outside temperature (To) was measured by averaging the 

four T-type thermocouples which were placed in four different locations inside the 

room. The baseline unit was placed inside the calorimetric room during the entire 

experiment so that where the surrounding environment could be carefully controlled. 
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Data Acquisition 

All of the data taken from the experimental setup during a test run were recorded 

by a data acquisition system (see Fig 4.2). Figure 4.2 shows a schematic of the data 

acquisition system utilized in this research. This data acquisition system consisted 

of a computer controller (IBM PS/2) with a IEEE-488 bus, a 50 channel high speed 

scanner (Hewilt Packard, Model# 3488a), and a digital voltmeter (Hewilt Packard, 

ModelT^ 3456A). A Quick Basic program was developed and utilized as the source 

code for the controller. This program scanned 16 channels (13 channels for tempera­

ture, 2 channels for pressure and one for power input into the compressor), read the 

voltage output and stored the data in a file. The controller, scanner, and the digital 

voltmeter communicated via an IEEE-488 bus. The data acquisition system automat­

ically monitored the mentioned instrumentation (thermocouple, pressure transducer, 

etc) and collected data, respectively, upon achieving steady state conditions. 

The voltage outputs of the thermocouples were converted to the corresponding 

temperatures using the vendor-supplied curve fit. This seven degree polynomial rep­

resents temperature as a function of voltage for T-type thermocouples. In addition, 

since the power transducer provided current output and the data acquisition system 

was only capable of accepting voltage input, a resistor (1 Kfi) was placed in series 

with the transducer, and the voltage drop across the resistor was recorded. The volt­

age output was then converted to power via the manufacturer supplied calibration 

information. 
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Figure 4.2; Data acquisition block diagram 
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Test Procedures 

Three different test setups were utilized in order to measure infiltration and heat 

leakage through the gasket in a typical home refrigerator/freezer. These tests were; 

Test A: baseline energy consumption 

Test B: gasket infiltration effect 

Test C: total gasket heat gain effect 

The outside temperature variations effect the energy consumption of the refrig­

erator/freezer unit significantly. In order to determine the magnitude of this effect on 

energy consumption of the refrigerator/freezer, a series of tests were conducted and 

the results were plotted in Fig. 4.3. As shown by Fig. 4.3, the energy consumption 

increased with outside temperature. In all three tests, the outside temperature (To) 

was maintained at a constant level. In addition to a constant outside temperature, 

the thermostat of the refrigerator/freezer was set at 1/7 (maximum possible cooling 

for fresh food). This setting resulted in a measurement of 34.5 ± in the fresh 

food and 6.0 ± 0.2'^F in the freezer compartment throughout the experiments. 

In order to obtain a reliable comparison between the individual tests (test A,B, 

and C), a 24 hour base for each test run was selected. Also, in order to insure accurate 

results, the same experiment was conducted 5 different times (sample size = 5) per 

each specific case (baseline, gasket infiltration, and total heat gain) and the results 

were averaged. Also, using Eq. 4.1 listed below, a statistical T-test about the mean 

{/.i = X) was performed to determine the adequacy of a sample size of 5 tests per 

case. 

(4.1) 
s/n 
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Figure 4.3: Effect of outside temperature on energy consumption 
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Where 

X = average energy consumption 

t = test statistics, t distribuition 

s = sample standard deviation 

n = sample size 

The T-test (equation 4.1) was selected because the population standard deviation 

(cr) was unknown and the sample size was small (n < 30). In order to find the lower 

and upper limit of the mean with 99% confidence level, data from the baseline unit 

of test cycle one were utilized, as follows; 

Average energy consumption, X = 2.502 KW 

Sample standard deviation, s = 0.041 

Confidence interval, a = 99% 

Degrees of Freedom, u = n-\ =4 

Critical value of t, = 4.604 

Substituting the above data into equation 4.1 gave the 

following lower and upper confidence limit 

lower limit = .Y - 0.084 KW 

upper limit = X + 0.084 KW 

Therefore, the selected sample size (n=5) resulted in 99% confidence interval for 

the measured mean(X). Thus a sample size of 5 was selected for test cycles 1 and 2. 

This statistical method is presented in any of a number of statistics books, such as 

Statistical Design and Analysis of Engineering Experiments [35]. 
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Gasket Infiltration 

Experimental measurement of infiltration was done by comparing the total en­

ergy consumption of the baseline unit (test A) with the total energy consumption 

of the infiltration-free unit (baseline unit minus any infiltration eff"ect, test B) both 

under the same conditions (constant outside temperature, 24 hour test cycle, etc.). 

Compressor run time was measured as well in order to provide the magnitude of 

the gasket infiltration effect on the refrigerator/freezer performance. As shown by 

equation 4.2, compressor run time is directly proportional to energy consumption. 

First the total energy consumption and compressor run time of the baseline unit 

were measured. The energy consumption and compressor run time of the unit for 

one cycle and for an entire test were determined as follows: 

for a data acquisition cycle i: 

4 = Pi (4.2) 

= energy consumption of the unit per data acquisition cycle i (W-hr) 

RTj = compressor run time per data acquisition cycle i (hr) 

Pj = average power per data acquisition cycle i (W) 

and for a compressor cycle: 

iV N 
(4.3) 

2=1  i=l 

N 
(4.4) 

2 = 1 

where 

Ec = Energy consumption of the unit per compressor cycle (W-hr) 

RTc = Compressor run time of the unit per compressor cycle (hr) 



www.manaraa.com

38 

N = Number of compressor cycles in a test 

Finally, the energy consumption of each compressor cycle was added in order to 

measure the total energy consumption of the unit during a test. The same procedure 

was utilized to measure the compressor run time of a test. Appendix A showes data 

from an entire three hour test consisting of several compressor cycles. 

Next, to measure the effect of gasket infiltration on refrigerator/freezer unit 

energy consumption, the baseline unit gasket was taped tightly to its steel structure 

using a two sided tape. This eliminated all possible air infiltration through the 

gasket. Under the same condition as the baseline unit, the total energy consumption 

and compressor run time of the new setup were measured. The measurements were 

done in the same manner as for the baseline unit. 

The measured energy consumption values were subtracted from the baseline 

energy consumption in order to provide the consumption due solely to the infiltration 

effect. Similarly, the baseline compressor run time was subtracted from the measured 

run time of the infiltration free unit to come up with the effect of infiltration on 

compressor run time. Also, the micro-manometer was utilized to measure the actual 

differential pressure between the inside of the refrigerator/freezer cabinet and the 

outside pressure. This was done to verify the previously estimated value (Ap = 0.01) 

that was utilized to calculate the infiltration. The micro-manometer showed Ap = 

0.012 inches of water which was very close to previously estimated value. 

With the above experimental procedure and setup as shown in Fig. 4.1, the tests 

proceeded in the following manner: 

1. Start-up of all the instruments and equipment. 

2. Monitoring of the conditions by the computer to obtain the steady state con­
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ditions. The steady state condition were obtained when compressor run time, 

temperature of fresh food and freezer compartment, and compressor off time 

reached steady state conditions. 

3. Data taking (energy consumption, average power, temperatures, etc) for a spe­

cific period. 

4. Repeat step 3 until the desired number of samples are obtained. 

Gasket Heat Gain 

To measure the total effect of gasket heat gain (conduction combined with in­

filtration, test C) on the refrigerator/freezer, a new modification was added to the 

infiltration-free unit. This modification involved adding insulation around the gas­

ket area using cotton batting and duct tape. This reduced all possible gasket heat 

gain (conduction as well as infiltration) to a negligible level (see Fig. 4.4). Energy 

consumption and compressor run time of the refrigerator/freezer due to total gasket 

heat gain were measured under the same conditions as the base line unit. Again, the 

obtained energy consumption was subtracted from the baseline energy consumption 

to provide the consumption of the refrigerator/freezer due to total gasket heat gain 

(conduction combined with infiltration). Also, the energy consumption of the refrig­

erator/freezer unit due to gasket heat leakage alone was determined by subtracting 

the total energy consumption from the energy consumption due to infiltration alone. 

The same procedure was utilized to determine the effect of gasket heat gain (conduc­

tion combined with infiltration ) on compressor run time. 

An alternative method is sometimes used in industry to measure heat gain 
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through the gasket as follows: 

• Apply a constant heat source in the cabinet to measure the total heat loss of 

the unit. Also connect the same cabinet face to face with an identical cabinet, 

excluding the doors, and measure the heat loss through the walls of the two 

cabinets. The difference between the original test and one half the value mea­

sured in the second test is the total door loss. The loss through the door itself 

could then be analytically calculated. Finally, the gasket heat loss would be: 

^igasket ~ ^total ~ ^^lualls ^door) (4-5) 

This method leads to a plausible estimate of the heat gain through the gasket, but it 

relies on some speculation as to the door loss. However, the method that was utilized 

in this study is more direct and is felt to be more acuurate than the alternative one 

just mentioned. 

Results and Discussion 

In order to investigate the significance of gasket heat gain, two different test 

cycles (test A, B, and C per cycle) were performed and the results obtained are sum­

marized in Tables 4.1 and 4.2, respectively. As mentioned before, in order to insure 

more accurate results, the reported results were obtained by conducting the same 

experiment on 5 different dates for each specific case (baseline unit test, infiltration 

free unit test, and gasket heat gain test). 

Table 4.1 shows the results obtained during the first test cycle. As shown, the 

outside temperature stayed constant throughout this test cycle (85 ± O.l^F) and 

the 1/7 thermostat setting (maximum possible cooling for fresh food compartment) 
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Table 4.1: The effect of gcisket heat gain on refrigerator/freezer performance, test 
cycle 1 

Charact­
eristic 

Base Line (BL) BL - Infiltration BL - Total Gasket Losses Charact­
eristic X s ^min ^max X s ^min xmax X s ^min ^max 
To"" 85.3 .5 84.2 88 85.3 1.3 85.3 89.3 85.4 2.1 78 89.3 

Tr ^ 34 .7 33 37.5 35 1.5 33.7 39.4 34.3 1 37.3 31.3 
T f < ^  5.9 .5 4.9 9 6 .3 5.5 6.7 6 .9 3.6 9.1 

cycles 
day 57 8 50 65 56 7 53 64 53 8 49 64 

kW—hr 
day 2.50 .04 2.44 2.53 2.47 .06 2.40 2.54 2.37 .06 2.30 2.43 

RT'^ 40.6 6.6 32.8 46.1 40.0 3.4 35.4 44.6 38.6 3.3 35.2 42.3 

^To= outside temperature, 

^Tr=fresh food temperature, 
y=freezer temperature, ^F 

^RT = percent run time 
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resulted in measurements of 34.5 ± 0.5^F and 6 ± .20^F in the fresh food and freezer 

compartments, respectively. The results of test cycle 1 showed a total of 5% increase 

in energy consumption due to total gasket heat gain (heat leakage combined with 

infiltration effect). From this total of 5%, the increase in energy consumption due to 

the infiltration effect alone was about 1% and the rest (4%) was due to conduction 

heat leakage. Also, test cycle 1 showed similar results for the compressor run time 

and compressor cycles per day. As shown by Table 4.1, a 4.9% increase in compressor 

run time was measured due to total gasket heat gain (1.5% due to infiltration and 

3.4% due to heat leakage). Also, compressor cycles increased by about 7% due to 

total gasket heat gain (2% increase due to infiltration and 5% due to conduction heat 

leakage) 

Results obtained during the second test cycle are shown in Table 4.2. This 

test was conducted in order to verify the accuracy and repeatability of the first 

test cycle. Again, test cycle 2 was conducted while the outside temperature stayed 

constant throughout and the thermostat was set at 1/7. As shown by Table 4.2 

similar results were obtained during the second test cycle compare to first test cycle. 

Energy consumption of the unit showed 5% increase due to total gasket heat gain 

(infiltration combined with heat leakage)(also see Table 4.4). From this total, 2% 

increase in energy consumption was due to the infiltration effect and the rest (3%) 

was due to heat leakage effect. Also a total of 5% of compressor run time is related 

to conduction heat leakage combined with infiltration. The small deviation between 

energy consumption of the unit during the first test cycle and second test cycle was 

part ly due to TQ .  

For further verification of these results, an analog KW-HR Meter was utilized 
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Table 4.2: The summarized effect of gasket heat gain on refrigerator/freezer perfor­
mance, test cycle 2 

Charact­
eristic 

Base Line (BL) BL - Infiltration BL - Total Gasket Losses Charact­
eristic X s ^min ^max X s ^min ^max X s ^min Xmax 
To"" 83.7 .9 81.7 87 83.8 1.5 81.9 91.7 83.8 2.1 77.5 86 

Tr ^ 33.9 1.6 31.7 49 34 1.4 30.8 42.3 34 1.9 33.2 37 

T f - 5.5 .7 3.4 8.6 5.5 1.4 2.4 9.5 5.8 1.9 3.9 9 
cycles 

day 63 5 52 68 62 9 40 68 62 2 52 68 

kW—tir 
day 2.40 .26 2.21 3.19 2.36 .17 2.23 2.79 2.28 .04 2.24 2.31 

RT 43.3 5.0 40.0 54.8 42.5 6.7 25.1 54.0 41.1 4.9 40.7 42.3 

^To= outside temperature, 

^Tr=fresh food temperature, 
r=freezer temperature, ^F 

I 

RT = percent run time 
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Table 4.3: KW - HR Meter Read Out During Test Cycle 1 and 2 

Charact­

eristic 

Test Number 1. Test Number 2. Charact­

eristic z « cr ^min Xmax A x ^  X <T ^m.in xmax Ax 
Base Line 2.87 .17 2.65 3.07 - 2.81 .45 2.23 3.36 -

Inf. ^ 2.82 0.05 2.78 2.85 2 2.76 0.27 2.29 2.98 2 

2.72 0.1 2.65 2.78 5 2.66 0.04 2.61 2.69 5 

= average energy consumption 

^Ax = higher percent of energy consumption compare to base line 
•^Inf. = the infiltration effect on base line unit 

& I = The conduction combined with infiltration effect on base line unit 

Table 4.4: Comparison Between Different Test Cycle 1 and 2 

Charact­

eristic 

Test Number 1. Test Number 2. Charact­

eristic X " RT Ax ART ^ X RT Ax ART 
Base Line 2.50 40.6 - - 2.40 43.3 - -

Inf. ^ 2.47 40.0 1.0 1.5 2.36 42.5 2.0 1.8 

C & I 2.37 38.6 5.0 4.9 2.28 41.1 5.0 5.0 

= average energy consumption 

^Ax = higher percent of energy consumption compare to base line 
"^ART = higher percent of run time compare to base line 

^Inf. = the infiltration effect on base line unit 
^C & I = The conduction combined with infiltration effect on base line unit 
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during test cycle 1 and 2 and the values obtained from this meter are reported in 

Table 4.3. As indicated by Table 4.3, higher energy consumption were measured by 

this instrument compared with watt transducer and the data acquisition system (see 

Tables 4.1, 4.2, 4.3). This slight increase was partly caused by the compressor cooling 

fan energy consumption. In each compressor cycle, after the compressor shutoff, the 

compressor cooling fan continued to operate until the compressor cooled off. Thus, 

higher energy consumption was indicated. As shown in Table 4.3, a 5% higher 

energy consumption was measured by KW-HR Meter during test cycle 1 for total 

gasket heat gain (2% due to infiltration effect and 3% due to conduction effect). It 

also measured 5test cycle 2. From this total of 5% energy consumption, 2% was due 

to infiltration and the rest 3% was due to conduction. 

The data taken during all tests show interesting trends as indicated in Table 4.4. 

In general, these tests indicate as much as 2% increase in energy consumption due 

to infiltration effects, which is not nearly as significant as has been claimed in the 

literature and by manufacturers. Also, the total energy use is 5% due to conduction 

heat leakage combined with infiltration effect. Again this is proven not to be as 

significant as has been claimed elsewhere. As mentioned before, according to some 

literature, up to a 21% increase in energy consumption of the refrigerator/freezer was 

obtained due to gasket heat gain. 

Summary 

In this chapter, the magnitude of gasket heat gain in a typical refrigerator/freezer 

was studied. Also, the significance of gasket infiltration and heat leakage was evalu­

ated experimentally, and the primary findings were: 
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1. Experimental findings of the present chapter showed that only a small portion 

of total load was caused by infiltration. Even though there was little agreement 

among the manufacturers and researchers about the magnitude of infiltration, 

this study showed only 2% increase in energy consumption was due to gas­

ket infiltration (see Table 4.4). This appears to contradict what some of the 

literature and manufacturers claim. 

2. There is little certainty about the exact magnitude of gasket heat leakage among 

the literature and manufacturers, although most believe it is significant. This 

study showed as much as 3% increase in energy consumption due to gasket 

conduction which was insignificant compare to other claims (see Table 4.4). 

3. Finally, the present study proved that the effect of total gasket heat gain (in­

filtration combined with conduction) on energy consumption of the refrigera­

tor/freezer is far below what was suggested in the literature and by manufac­

turers. The present chapter showed that only 5% of total load is due to gasket 

heat gain while others claimed as much as 22.5% increase in total load due to 

gasket heat gain. 

It is our hope that these data will help the industry and others place the proper 

perspective on reducing gasket heat gain as a potential for improving the efficiency 

of refrigerator/freezers. 
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CHAPTER 5. EXPERIMENTAL EVALUATION OF ALTERNATIVE 

REFRIGERANT 

An experimental evaluation of alternative refrigerants was done and is presented 

in this chapter. All experiments were conducted in a calorometic room in the Building 

Energy Utilization Laboratory (BEUL) of the Mechanical Engineering Department. 

In this chapter, the details of the unit modification and its preparation are presented, 

followed by a brief discussion of experimental test procedures. This chapter also 

presents the results obtained during the tests, data analysis, and the conclusions 

drawn. 

Test Setup 

In order to conduct the desired tests on the previously mentioned refrigera­

tor/freezer (baseline unit with CFC-12) with HFC-134a as a working fluid, the fol­

lowing modifications were made: 

1. Evacuation of CFC-12 refrigerant. 

2. Replacement of components for the refrigeration side (condenser, evaporator, 

compressor, and capillary tube). 

3. Leak testing of the refrigerator/freezer unit. 
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4. Charging of the refrigerator/freezer unit with an ester based lubricant and 

HFC-134a refrigerant. 

5. performance testing of the unit. 

A brief description of each of these steps are as follows: 

1. Line Evacuation 

In order to replace HFC-134a with CFC-12 refrigerant, the CFC-12 refrigerant 

was évacua,ted from the baseline unit and was stored in a CFC-12 waste capsule. To 

extract CFC-12 from the unit, the temperature of the waste capsule was kept below 

the room temperature throughout the evacuation. This was done by placing the 

capsule in an ice bucket, hence causing CFC-12 to flow from the unit to the waste 

capsule. The lower temperature results in faster flow of the CFC-12 to the waste 

capsule. 

2. Component Replacement 

After CFC-12 refrigerant was evacuated from the baseline unit, all of the com­

ponents on the refrigeration side (condenser, evaporator, compressor, and capillary 

tube) were replaced with new identical parts. The mentioned components were 

changed to avoid damage to the compressor and other components due to contact 

and/or interaction with even a small trace (one part per million) of CFC-12 with 

mineral oil and HFC-134a. 

To insure that the replacement parts were identical with the previous ones, new 

components for the unit were obtained from its original manufacturer. In addition 
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to these components (condenser, evaporator, compressor and capillary tube), two 

capillary tubes with different lengths were added in parallel to the original capillary 

tube (See Fig. 5.1). Figure 5.1 is a photograph of the capillary tube/needle valve 

manifold. 

Based on the desired pressure drops across the capillary tubes, the following 

capillary tube lengths (CL) were selected: 

1. CL = 125, D = 0.033 inch (original length, OL) 

2. CL = 107, D = 0.033 inch (OL - IS inch) 

3. CL = 87, D = 0.033 inch (OL - 36 inch) 

These capillary tubes built by the original manufacturer provide the necessary vari­

ation in the pressure drop. The capillary tu be/needle valve manifold was utilized in 

order to identify the impact of pressure drop across capillary tube on the unit energy 

consumption using HFC-134a as a working fluid. 

In addition to the previously mentioned instrumentation, a Setra (3-wire circuit. 

Model ^ 207, serial # 186213, range 0 to 500 psig, output 0.1 to 5.1 VDC ±50 mV, 

accuracy < ±0.13 % FS) and a Robinson-Halpern (model no. 174A, range 0 to 200 

psig, output 0.1 to 5.1 VDC, accuracy < ±0.4 % FS at 200 psig) pressure transducer 

were installed at inlet and exit of the capillary tube, respectively, in order to measure 

the corresponding pressure at each station. These pressure transducers were powered 

externally by a 5-VDC power supply. Before installation, the pressure transducers 

were calibrated using a dead-weight tester. 
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Figure 5.1: Photograph of the capillary tube setup 
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3. Leak Testing 

Following the component change out, the baseline unit was tested for possible 

leaks. First, the unit was evacuated with a vacuum pump to a minimum of -30 in-Hg 

and left untouched for a period of time in order to detect the existence of any leaks 

in the unit. The rise in the system pressure (from -30 in-Hg to room pressure) was 

indicative of leaks in the unit. To pin point the location of each leaks, the unit was 

pressurized with HFC-134a vapor and a refrigerant electronic leak detector (General 

Electric halogen leak detector type H-lOA) was used to detect the leaks. The tests 

were continued until all leaks were successfully detected and sealed. 

4. System Charging 

The final task involved the charging of the compressor and the system with 

a proper lubricant and HFC-134a. Since refrigerant HFC-134a is immiscible with 

mineral oil (the typical lubricant that used with CFC-12 refrigerant), it was necessary 

to use a different lubricant in the compressor. It is well known that the lubricant 

viscosity affects both the compressor and the overall system performance. Therefore, 

a thorough investigation was necessary prior to the selection of a specific lubricant 

for this purpose. The investigation led to the selection of an ester based lubricant 

(EMKARATE RL213B, polyol ester) which is miscible with HFC-134a. Additionally, 

the selected lubricant has viscosity close to that of mineral oil. The viscosity of 3GS 

mineral oil and the RL213b easter based lubricant is 29.5 and 21 CST (centistokes) 

at 104 (40 ^ C) and 4.3 and 4.5 CST at 212 (100 ^ C), respectively. Prior to 

charging the lubricant into the compressor, the lubricant was heated and placed under 

vacuum over night to ensure moisture removal. Using a precise laboratory balance. 
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thirteen ounces of the lubricant were measured and charged into the compressor. 

This amount of lubricant was identical to the amount used with CFC-12 in the 

refrigerator/freezer, with a Tecumseh compressor. Again, the unit was placed under 

vacuum overnight to ensure that no moisture was picked up by the system during 

the charging. 

After charging the compressor with an lubricant, the refrigerator/freezer unit was 

filled with HFC-134a refrigerant. A charge of 8.5 ounces of HFC-134a refrigerant was 

weighed using a precise electronic scale with ±0.001 lb scale accuracy and introduced 

into the compressor. This amount of HFC-134a was identical to the amount used in 

a typical 20ft^ refrigerator/freezer. 

Test Procedure 

In all tests that were conducted, the outside temperature (TQ) was maintained 

at a constant level and the thermostat of the unit was set at 1/7. Additionally, 

each specific test was conducted at least 5 different times to ensure accurate average 

results. 

Two different test cycles were conducted in order to investigate the effects of 

capillary tube length as well as refrigerant charge on energy consumption of the 

refrigerator/freezer unit. These test cycles were: 

1. Test cycle 1: effect of pressure drop variation across the capillary tube (different 

capillary tube length) on energy consumption of the refrigerator/freezer unit. 

2. Test cycle 2: effect of HFC-134a charge variation on energy consumption of the 

refrigerator/freezer. 
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A brief description of each of these cycles follows: 

1. Test Cycle 1: Pressure Drop Variation 

In order to determine the effect of pressure drop across the capillary tube on 

energy consumption of the unit, a number of tests were conducted. First, during 

each test, a capillary tube length had to be selected. This was done by selecting 

one of the three fixed lengths or a combination of fixed length and needle valve 

adjustments. To obtain pressure drops other than those related to the three fixed 

capillary lengths (CL = 125, 108, and 87 inch), the needle valve of desired capillary 

tube was adjusted and monitored via the data acquisition system until the desired 

pressure drop was obtained. Following the selection of each capillary tube length 

(different pressure drop across the tube), the unit was allowed to run until steady 

state conditions were achieved. Then the required data were automatically read by 

the data acquisition system and stored in data files to be analyzed later. 

2. Test Cycle 2: Charge Variation 

In this test cycle, a total of 5 different charges were tested to determine their 

eifect on energy consumption. In addition to these 5 different charges, throughout 

this test cycle the unit was operated with the capillary tube length that gave the 

lowest energy consumption during test cycle 1. To measure energy consumption of 

the unit utilizing different charges, first the system was evacuated overnight to ensure 

that no HFC-134a was presented in the compressor lubricant. Then, the refrigerant 

was charged in 1 ounce increments to the desired level for each test. Each charge was 

measured using a precise laboratory scale. 
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Results and Conclusion 

Two different test cycles (test cycle 1 and 2) were conducted in order to in­

vestigate the significance of pressure drop across the capillary, as well as, the effect 

of different HFC-134a charges on the energy consumption of the refrigerator/freezer 

unit. As mentioned before, in order to ensure more accurate results, the reported 

average results were obtained by conducting the same experiment at least 5 different 

times for each of the cases within a cycle (different capillary lengths and different 

charges). 

1. Test Cycle 1: Pressure Drop Variation 

A total of eight different pressure drops across the capillary tubes were tested. 

First, testing was performed for each of the three available capillary lengths (CL = 

125, 108, and 87 inch) while the respective needle valve was left fully open. The 

results are summarized in Table 5.1, while the corresponding energy consumptions, 

the calculated means and the pressure drops for the entire test cycle are presented 

in Fig. 5.2. As shown by Fig. 5.2, the pressure drop across the capillary is inversely 

related to the energy consumption of the unit and it shows a slight downward trend 

with increasing pressure drop. The lowest energy consumption was measured at 

Ap = 141p5i. This pressure drop (Ap = i41p5i) corresponds to the 125 inch capillary 

length which currently is standard with CFC-12 in the refrigerator/freezer. Also, 

for all three capillary lengths, a slightly lower energy consumption was measured 

relative to the CFC-12 baseline unit (see Table 5.1). While the obtained results were 

promising, they were not complete. 

Another complete set of tests were conducted in order to determine a pressure 
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Table 5.1: The effect of pressure drop across capillary tube on refrigerator/freezers 
performance for first test 

Charact­
eristic 

Ap = 141 psi (L=125 in) Ap = 136 psi (L=107in) Ap = 128 psi (L=89 in) Charact­
eristic X s ^min ^max X s ^min Xmax X s ^min xmax 
To'' 85.2 .5 84.2 85.9 85.3 .7 83.7 86.3 85.3 .3 83.9 85.4 

Tr ' 36.5 .5 35.5 37.2 36.5 .6 35 37.3 36.1 .4 35.1 36.8 

T f ;  7.4 .6 6.2 8.3 7.3 .7 5.7 8.2 6.7 .4 5.8 7.5 

cycles 
day 66 2 64 68 64 - - - 64 - - -

kw—hr 
day 2.34 .02 2.36 2.32 2.38 .02 2.36 2.41 2.41 .02 2.39 2.43 

RT^ 45.1 .3 44.9 45.4 45.8 .8 45.3 46.4 46.4 .3 46.0 46.7 

outside temperature, ^ F 

^Tr=fresh food temperature, ^F 
y=freezer temperature, ^F 

^RT = percent run time 
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Figure 5.2: The effect of pressure drop across the capillary tube on refrigera­
tor/freezer energy consumption for test one 



www.manaraa.com

58 

drop across capillary tube that yield the lowest energy consumption. Utilizing the 

previously mentioned procedure, a total of 5 different pressure drops were selected 

and the obtained results are summarized in Table 5.2 while the measured energy con­

sumptions, the calculated means and the corresponding pressure drops for the entire 

test cycle are presented in Fig. 5.3. As seen in Fig. 5.3, the energy consumption shows 

a slight minimum in the range of pressure tested, while Ap = I37psi resulted in the 

lowest energy consumption during the second test. This pressure drop (Ap = 137p5i) 

corresponded to the 125 inch capillary tube length. This result confirms the earlier 

finding regrading the capillary length that yield the lowest energy consumption. Also, 

as indicated earlier, the 125 inch capillary length is currently being used with CFC-12 

in the refrigerator/freezer. Additionally, the second test shows similar results for the 

compressor run time (see Table 5.2). 

To verify the repeatability of these results, another set of tests for the three 

original capillary tube lengths (L = 125, 108, and 87 inch) were conducted and the 

results are presented in Fig. 5.4. As shown by Fig. 5.4, the results obtained are 

similar to previous test. The results confirm that Ap = ISlpsi yields the lowest 

energy consumption. Other pressure drops across the capillary were not tried due to 

difficulties associated with obtaining the very exact pressure drop using the installed 

needle valve setup. 

The measured energy consumptions, the calculated means and the corresponding 

pressure drops for the entire cycle are presented in Fig. 5.5. Again, the energy 

consumption shows a slight minimum in the pressure range tested and the results 

confirm the previous findings. Also, it shows that the lowest energy consumption is 

obtained when the capillary tube length of 125 inch is utilized. 
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Table 5.2: The effect of pressure drop across the capillary tube on the refrigera­
tor /freezer performance for second test 

Charact­
eristic 

Ap = 144 psi Ap = 140 psi Ap — 137 psi (L=125 in) Charact­
eristic X s ^min xmax X s ^min ^max X s ^min ^max 
To « 85.7 .5 84.7 86.3 85.8 .3 84.8 86.3 85.5 .5 84.7 86.5 

Tr ' 36.5 .4 35.7 37.1 36.9 .3 36.2 37.3 36.7 .5 36 37.7 

7.5 .5 6.3 8.2 8.1 .3 7.2 8.7 7.7 .6 6.9 8.8 
cycles 

day 72 - - - 70 4 64 72 67 4 64 72 

kW—lir 
day 2.46 .04 2.40 2.52 2.36 .04 2.31 2.40 2.35 .02 2.33 2.38 

RT ^ 48.4 .9 47.3 49.7 46.0 .7 45.0 46.9 45.9 .3 45.4 46.3 

^To= outside temperature, 

^îr=fresh food temperature, ^F 
y=freezer temperature, ^F 

^RT — percent run time 
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Table 5.2 (Continued) 

Charact­
eristic 

Ap = 133 psi (L=107 in) Ap = 127 psi (L=89 in) Charact­
eristic X s ^min xmax X s ^min Xmax 

To 85.1 .5 84.6 86.7 84.9 .1 84.6 85.1 

TT 36.4 .5 35.9 37.9 36.2 .1 35.9 36.4 
7.3 .6 6.7 9 7.1 .3 6.5 7.3 

cycles 
day 64 - - - 64 - - -

kw—tir 
day 2.42 .04 2.37 2.48 2.44 .03 2.40 2.41 

RT 47.1 .8 46.1 48.2 47.3 .5 47.4 47.6 

o 
o 
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Figure 5.3: The effect of pressure drop across the capillary tube on refrigera­
tor/freezer energy consumption, second test 
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Figure 5.4: The effect of pressure drop across the capillary tube on refrigera­
tor/freezer energy consumption, repeatability for second test 
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Figure 5.5: The effect of pressure drop across the capillary tube on refrigera­
tor/freezer energy consumption, for test cycle 1 
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The results obtained from these tests indicate that the 125 inch capillary tube 

length yield the lowest energy consumption for HFC-134a refrigerator/freezer unit. 

This energy consumption is slightly lower than that of comparable CFC-12 unit, 

and the indicated capillary tube length (125 inch) was used to conduct the tests for 

HFC-134a charge variation. 

2. Test Cycle 2: HFC-134a Charge Variation 

A total of seven different charges were tested to determine the effect of charge on 

energy consumption. Results corresponding to the different charges are summarize 

in Table 5.3, and the measured energy consumptions, the calculated means, and the 

related pressure drops for the entire test cycle are presented in Fig. 5.6. As seen in 

Fig. 5.6, the energy consumption shows a slight changes with increasing HFC-134a 

refrigerant charge. As shown by Table 5.3 and Fig. 5.6, the 8.5 ounce charge of 

HFC-134a yields the lowest energy consumption by the unit. Again, this amount of 

charge (8.5 HFC-134a) is similar to that of CFC-12 which was used in the baseline 

refrigerator/freezer unit. Also, Table 5.3 shows similar results for the compressor run 

times. Figure 5.7 shows the energy consumption results obtained during the second 

test. This test was conducted to ensure the accuracy and repeatability of previous 

test. As shown by Fig 5.7, the obtained results confirm the previous findings identified 

during the second test. 

The results obtained during both cycles (test cycle 1 and 2) were compared 

with the ones obtained from a bread-board type vapor compression system built by 

Technovate Inc. (see Fig. 5.8) [36]. This unit operates with CFC-12 as a working 

fluid and provides very accurate results during operations. In order to compare the 
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Table 5.3: The effect of HFC-134a refrigerant charge level on refrigerator/freezer 

performance for test 1 

Charact­

eristic 

Charge = 6 (oz) Charge = 7 (oz) Charge = 8 (oz) Charge = 8.5 (oz) Charact­

eristic X s ^min ^max X s ^min '•'^inax X s ^min ^max x s ^min ^•inax 
To"" 84.9 .2 84.5 85.3 84.7 .3 84.1 85.4 84.7 .3 84.2 85.4 85.5 .5 84.7 86.5 

Tr 31.7 .4 31.2 32.8 33.1 .3 32.6 33.6 34.7 .4 34.1 36.3 36.7 .5 36 37.7 

4.7 .3 4 5.2 5.3 .3 4.8 5.9 5.9 .3 5.2 6.9 7.7 .6 6.9 8.8 

cijcles 
day 48 - - - 56 - - - 64 - - - 66.64 4.16 64 72 

kiu—hr 
day 2.80 .02 2.78 2.83 2.54 .023 2.51 2.58 2.46 .032 2.40 2.51 2.35 .02 2.33 2.38 

RT ^ 76.0 1.6 73.1 78.0 55.9 .5 55.3 57.0 51.3 .8 49.9 54.7 45.9 .3 45.4 46.3 

^To= outside temperature, 

^Tr=ircs\\ food temperature, 

^7y=freezer temperature, ^F 

^RT = percent run time 
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Table 5.3 (Continued) 

Charact­

eristic 

Charge = 9.0 (oz) Charge = 10.0 (oz) Charge = 11.0 (oz) Charact­

eristic X s ^min ^max X s ^min Xmax x s ^min Xmax 

To 85.4 .3 84.1 85.2 85.6 .2 84.6 85.4 85.8 .4 84.7 86.5 

Tr 35.4 .3 34.6 35.7 35.8 .3 35.3 37 35.4 .3 34.8 36 

6.4 .3 5.5 6.8 6.8 .2 6.4 7.4 6.4 .6 5 7.1 

cycles 
day 64 - - - 67 4 64 72 64 - - -

kiu—hr 
day 2.37 .02 2.34 2.40 2.37 .013 2.35 2.39 2.58 .025 2.54 2.63 

RT 47.3 .4 46.6 47.9 46.0 .6 45.1 46.8 48.9 .3 46.8 51.0 
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Figure 5.6: The effect of HFC-134a refrigerant charge level on refrigerator/freezer 
energy consumption for test 1 
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Figure 5.7; The effect of HFC-134a refrigerant charge level on réfrigérât or/freezer 
energy consumption for test two 
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A - 1  S i g h t  T u b e ,  O u t s i d e  C o l l  
( I n l e t ;  c o o l i n g / o u t l e t ;  h e a t i n g )  

A - 2  S i g h t  T u b e ,  O u t s i d e  C o l l  
( c e n t e r ;  c o o l i n g / h e a t i n g )  

A-3 Sight Tube, Outside Coil 
( o u t l e t ;  c o o l i n g / I n l e t ;  h e a t i n g )  

A - 4  S i g h t  T u b e ,  f l o w m e t e r  
A - 5  s igh t  G l a s s ,  L i q u i d  l i n e  
A - 6  S i g h t  T u b e ,  R e f r i g e r a n t  R e c e i v e r  
A - 7  S i g h t  G l a s s ,  C o m p r e s s o r  S u m p  
' A - Q  S i g h t  T u b e ,  I n s i d e  C o i l  

( I n l e t ;  c o o l i n g / o u t l e t ;  h e a t i n g )  
A - 9  S i g h t  T u b e ,  I n s i d e  C o l l  

( c e n t e r ;  c o o l i n g / h e a t i n g ]  
A - 1 0  S i g h t  T u b e ,  i n s i d e  C o l l  

( o u t l e t ;  c o o l i n g / i n l e t  h e a t i n g )  
A l l  S i g h t  T u b e ,  R e f r i g e r a n t / O i l  S e p a r a t o r  
A - 1 2  S i g h t  T u b e ,  O i l  R e c e i v e r  

0 - 1  A c c e s s  F i t t i n g ,  H i g h  S i d e  
0 - 2  A c c e s s  F i t t i n g ,  L o w  S i d e  

C  C o m p r t i i o r  
0  D r i e r  
F  F l o x f n e t i r ,  L i q u i d  L i n t  

G - 1  G a u g e ,  O u t s i d e  C o l l  
( I n l e t ;  c o o l i n g / o u t l e t  h e a t i n g )  

G - 2  G a u g e ,  O u t s i d e  C o l l  
( o u t l e t ;  c o o l I n g / l n l e t  h e a t i n g )  

G - 3  G a u g e ,  I n s i d e  C o l l  
» -  ( i n l e t ;  c o o l i n g / o u t l e t  h e a t i n g )  

G - 4  G a u g e ,  I n s i d e  C o i l  
( o u t l e t ;  c o o l I n g / l n l e t ;  h e a t i n g )  

1 1 - 1  F u s i b l e  P l u g ,  R e f r i g e r a n t  R e c e i v e r  
1 1 - 2  F u s i b l e  P l u g ,  O i l  R e c e i v e r  
1 1 - 3  F u s i b l e  P l u g ,  S e p e r a t o r  

I  I n s i d e  C o i l  
0  O u t s i d e  C o l l  
Q  R e v e r s i n g  V a l v e  

R - 1  R e c e i v e r ,  R e f r i g e r a n t  
R - 2  R e c e i v e r ,  O i l  
R - 3  S e p e r a t o r ,  O i l / R e f r i g e r a n t  

T - 1  T h e r m o m e t e r ,  O u t s i d e  C o i l  
( i n l e t ;  c o o l i n g / o u t l e t ;  h e a t i n g )  

T - 2  T h e r m o m e t e r ,  O u t s i d e  C o l l  
( o u t l e t ;  c o o l I n g / l n l e t ;  h e a t i n g )  

T - 3  T h e r m o m e t e r ,  I n s i d e  C o i l  
( i n l e t ;  c o o l i n g / o u t l e t ;  h e a t i n g )  

T - 4  T h e r m o m e t e r ,  . I n s i d e  C o i l  
( o u t l e t ;  c o o l i n g / i n l e t ;  h e a t i n g )  

U - 1  C h e c k  V a l v e  
U - 2  C h e c k  V a l v e  

V - 1  V a l v e .  R e f r i g e r a n t  R e c e i v e r  B y - P a s s  
V - 2  V a l v e ,  R e f r i g e r a n t  R e c e i v e r  I n l e t  
V - 3  V a l v e ,  R e f r i g e r a n t  R e c e i v e r  O u t l e t  
V - 4  V a l v e ,  C a p i l l a r y  M e t e r i n g  

( C o o l i n g  O n l y )  
V - 5  V a l v e ,  T h e r m o s t a t i c  E x p a n s i o n  

( C o o l i n g  O n l y )  
V - 6  V a l v e ,  S e p e r a t o r  I n l e t  
V - 7  V a l v e ,  S e p e r a t o r  O y - P a s s  
V - 0  V a l v e ,  S e p e r a t o r  O u t l e t  
V - 9  V a l v e ,  O i l  R e c e i v e r  I n l e t  
V - I O  V a l v e ,  O i l  R e c e i v e r  O u t l e t  

W  R e m o t e  B u l b  ( T X V )  
X  T h e r m o s t i t i c  E x p a n s i o n  V a l v e  ^  

. 2 - 1  S t r a i n e r  ( C o o l i n g  C y c l e )  
Z - 2  S t r a i n e r  ( H e a t i n g  C y c l e )  

Figure 5.8: Schemalic of vapor compression system by Technovate 
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Figure 5.9: Effect of pressure drop across capillary tube on power consumption of 
vapor compression system, Technovate 
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Technovate results with test cycle 1 and 2, the trends instead of the actual values 

of the overall energy consumption were considered. The results of different pressure 

drops across the capillary tube in the Technovate unit are shown in Fig. 5.9. As 

shown by Fig. 5.9, the unit power consumption decreases as pressure drop increases. 

Several attempt were made to determine a pressure drop that provide the lowest 

power consumption. However, this was not possible due to compressor shut off. 

Also, a series of similar tests were conducted to evaluate the effect of CFC-12 

charge level on the Technovate system power consumption (see Fig. 5.10). As shown 

by Figure 5.10, the power consumption decreases as the charge inside the system 

increases. The results obtained for the Ap and the compressor charges confirm the 

trends indicated earlier. 

Summary 

In this chapter, the effect of pressure drop across capillary tube as well as HFC-

134a charge level on energy consumption of a HFC-134a based refrigerator/freezer 

unit was evaluated and discussed. The main results are summerized as follows: 

1. The lowest energy consumptions were measured when the typical capillary (CL 

= 125 inch) length was used. 

2. A charge of 8.5 ounces of HFC-134a along with typical capillary tube length 

mentioned above resulted in lowest energy consumption. 

3. For the HFC-134a baseline unit (8.5 ounce refrigerant and 125 inch capillary), 

lower energy consumptions were measured relative to the CFC-12 baseline unit. 
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REFRIGERANT CFC-12 CHARGE LEVEL 

Figure 5.10: Effect of CFC-12 charge level on power consumption of vapor compres­
sion system, Technovate 
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The findings of this chapter apply only to residential refrigerator/freezers, and more 

specifically to the particular unit tested. In addition, the findings are based on the 

mentioned changes and modifications and may not be the same when the system 

operates under other conditions, such as various ambient temperatures. Also, the 

results could be affected by testing another manufacturer's products. 
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

This study was undertaken to investigate various experimental and theoretical, 

questions regarding total gasket gain (gasket infiltration and conduction heat gain) 

and the effects of HFC-134a on energy consumption of refrigerator/freezers. 

The findings of this study apply only to residential refrigerator/freezers, and 

more specifically to the particular unit tested. In addition, the findings are based on 

the mentioned changes and modifications and may not be the same when the system 

operates under other conditions, such as various ambient temperatures. Also, the 

results could be affected by testing another manufacturer's products. 

Gasket Study 

This study presents the results of an extensive literature review, interviews with 

refrigerator/freezer and gasket manufacturers, and a theoretical calculation of gasket 

infiltration and gasket heat gain. Also, a 20ft^ refrigerator/freezer was instrumented 

and three different test setups were utilized in order to experimentally measure gasket 

infiltration and gasket heat gain. This measurement was performed while the outside 

temperature was maintained constant throughout the tests. In addition to constant 

outside temperature, a sample size of five (N = 5, the same experiment five different 

times) and a 24 hour test cycle were selected. The primary findings of the gasket 
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study were as follows: 

1. The gasket area, including the gasket itself and the adjacent areas of the door 

and cabinet, has received considerable attention with respect to improvement 

of energy efficiency. 

2. Based upon the literature findings and manufacturer's claims, there appears to 

be some uncertainty concerning the magnitudes of conduction heat leakage and 

infiltration effects, although most believe them to be significant. 

3. The theoretical calculations done in the present study suggested that infiltration 

may be an important cause of heat gain. 

4. However, experimental findings of the present study showed that only a small 

portion of total load was caused by infiltration. This study showed only a 2% 

increase in energy consumption is due to gasket infiltration. 

5. This study showed as much as 3% increase in energy consumption due to gasket 

conduction, which was insignificant compare to other claims. 

6. The present study demonstrated that the effect of total gasket heat gain (in­

filtration combined with conduction) on energy consumption of the refrigera­

tor/freezer is far below what was suggested in the literature and by manufac­

turers. The present study showed that only 5% of total load is due to gasket 

heat gain while others claimed as much as 22.5% increase in total load due to 

gasket heat gain. 

Experimental findings of this study showed that only a small portion of refrigera­

tor/freezer thermal load (5%) is caused by gasket heat gain (infiltration as well as 
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conduction) although most manufacturers and researchers believe it is significant. It 

is our hope that these findings will help the industry and others place the proper 

perspective on reducing gasket heat gain as a potential for improving the efficiency 

of refrigerator/freezers. 

HFC-134a Study 

In order to experimentally evaluate the effect of HFC-134a refrigerant on the pre­

viously mentioned refrigerator/freezer unit, the refrigeration side components were 

replaced with new identical parts. In addition to refrigerant side components (con­

denser, evaporator, compressor, and capillary tube), two capillary tubes with different 

lengths were added in parallel to the original capillary tube. The capillary tube and 

needle valve setup provided a wide range of pressure drops across the capillary tube. 

A total of 8 different pressure drops and 7 different HFC-134a refrigerant charges 

along with the optimum capillary length were tested and the major findings of the 

conducted tests were as follows: 

1. The lowest energy consumptions were measured when the typical capillary (CL 

= 125 inch) length was used. 

2. A charge of 8.5 ounces of HFC-134a along with typical capillary tube length 

mentioned above resulted in lowest energy consumption. 

3. For the HFC-134a baseline unit (8.5 ounce refrigerant and 125 inch capillary), 

lower energy consumptions were measured relative to the CFC-12 baseline unit. 

This study showed that no dramatic changes in energy consumption occur when 

the same refrigerator/freezer is switched from CFC-12 to HFC-134a. However, with 
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the mentioned minor modifications that were made to the refrigerator/freezer unit, 

the HFC-134a based unit showed slightly smaller energy consumption compared to 

that of CFC-12 unit for ail cases. Also, the pressure drop and HFC-134a refrigerant 

charge findings provide important information for designers of refrigerator/freezers 

that utilize HFC-134a as a working fluid. It is note worthy that the replacement of 

CFC-12 with HFC-134a and a suitable lubricant resulted in only minimal variations of 

performance of the refrigerator/freezer tested. Further, the results were only slightly 

sensitive to effective capillary tube length and refrigerant charge. This suggests that 

the penalties paid in terms of performance may not be great in the short run and 

that future designs may show some gains as systems are re-optimized. 
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APPENDIX SAMPLE DATA 
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This data is taken on 09-21-1992 

TIME = 00:10:38 
ITERATION #= 1. 
TRi = 85.08 
TFZi = 6.8 
TFFi = 36.02 
TRf= 85.14 
TFZf=-3.27 
TFff = 30.75 
COMPRESSER RUNING TIME= 614.3499784469604 
ENGERY CONSUMED IN THIS CYCLE(W-HR) 36.03557179340458 
AVERAGE POWER FOR THIS CYCLE(W) = 211.1631203832727 

TOTAL ENERGY CONSUMED (W-HR)= 36.03557179340458 

************************************************************ 

TIME = 00:32:36 
ITERATION #= 2 
TRi = 84.99 
TFZi = 6.69 
TFFi = 35.96 
TRf= 84.98 
TFZf = -3.55 
TFff = 30.53 
COMPRESSER RUNING TIME= 614.06005859375 
ENGERY CONSUMED IN THIS CYCLE(W-HR) 35.91301856324769 
AVERAGE POWER FOR THIS CYCLE(W) = 210.5443352296348 

TOTAL ENERGY CONSUMED (W-HR)= 71.94859035665223 

************************************************************ 

TIME = 00:54:34 
ITERATION #= 3 
TRi = 84.81 
TTZi = 6.53 
TTFi = 35.83 
TRf = 84.82 
TFZf =-3.69 
TFff = 30.3 
COMPRESSER RUNING TIME= 612.090087890625 
ENGERY CONSUMED IN THIS CYCLE(W-HR) 35.77082138346353 
AVERAGE POWER FOR THIS CYCLE(W) = 210.3856270963781 

TOTAL ENERGY CONSUMED (W-HR)= 107.7194117401157 

TIME = 01:16:31 
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ITERATION #= 4 
TRi = 84.74 
TFZi = 6.36 
UTi = 35.7 
TRf=84.8 
TFZf=-3.68 
TFfF= 30.36 
COMPRESSER RUNING TIME= 612.909912109375 
ENGERY CONSUMED IN THIS CYCLE(W-HR) 35.90985813582358 
AVERAGE POWER FOR THIS CYCLE(W) = 210.9208657501617 

TOTAL ENERGY CONSUMED (W-HR)= 143.6292698759393 

TIME = 01:38:36 
ITERATION #=5 
TRi = 84.74 
TFZi = 6.33 
TFFi = 35.66 
TRf = 84.83 
TFZf=-3.59 
TFfF= 30.36 
COMPRESSER RUNING TIME= 618.7900390625 
ENGERY CONSUMED IN THIS CYCLE(W-HR) 36.23682349149577 
AVERAGE POWER FOR THIS CYCLE(W) = 210.8187855884483 

TOTAL ENERGY CONSUMED (W-HR)= 179.8660933674351 

TIME = 02:00:36 
ITERATION #=6 
TRi = 84.72 
TFZi = 6.44 
TFFi = 35.75 
TRf =85.1 
TFZf=-3.41 
TFfF= 30.52 
COMPRESSER RUNING TIME= 616.2099609375 
ENGERY CONSUMED IN THIS CYCLE(W-HR) 36.26959039954291 
AVERAGE POWER FOR THIS CYCLE(W) = 211.8929159140901 , 

TOTAL ENERGY CONSUMED (W-HR)= 216.1356837669782 

TIME = 02:22:36 
ITERATION #= 7 
TRi = 84.97 
TFZi = 6.55 
TFFi = 35.83 
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TRf= 84.97 
TFZf = -3.43 
TFfF= 30.49 
COMPRESSER RUNING TIME= 616.76025390625 
ENGERY CONSUMED IN TfflS CYCLE(W-ffil) 36.11123409374999 
AVERAGE POWER FOR TfflS CYCLE(W) = 210.7795402089262 

TOTAL ENERGY CONSUMED (W-HR)= 252.2469178607282 

TIME = 02:44:32 
ITERATION #=8 
TRi = 84.89 
TFZi = 6.53 
TFFi = 35.79 
TRf= 85.01 
TFZf =-3.49 
TTff = 30.36 
COMPRESSER RUNING TIME= 612.140625 
ENGERY CONSUMED IN TfflS CYCLE(W-ffll) 35.6510202436659 
AVERAGE POWER FOR TfflS CYCLE(W) = 209.6637073829192 

TOTAL ENERGY CONSUMED (W-ffll)= 287.8979381043944 

FIN AllllllIlII !!!!!!!!!!!!!!!!!!!!!!!!!!!! 

N O T E  I T  S T O P E D  W H I L E  
C O M P R E S S O R  W A S  O F F  

TIME =03:00:00 
ITERATION NUMBER = 9 

TOTAL ENERGY CONSUMED (W-HR)= 302.4839684510741 
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